Name: \qquad

Chapter 8 Review Notes

Prime Factorization

You find the prime factorization of a number by using a \qquad -. All numbers being multiplied together in your prime factorization must be \qquad .

Prime numbers can only be divided by \qquad and \qquad . Complete numbers 5 and 9 on page 594.
5.
9.

Finding the Greatest Common Factor (GCF) of Numbers

List all the factors of the pair of numbers. The GCF is the \qquad number they have in common.
Complete numbers 11 and 14 on page 594.
11.
14.

Finding the Greatest Common Factor (GCF) of Monomials.

Find the GCF of the numbers and the GCF of each different variable. Write each of the GCF's as a product.

If you have two terms with the same variable raised to a power, the GCF is the one with the \qquad exponent.
Complete numbers 17 and 18 on page 594.
17.
18.

Factoring Using the GCF

Find the GCF of each term. Put the GCF in front of the parenthesis and figure out what was left from the original terms after you factored out the GCF.
Complete numbers 21 and 25 on page 595.
21.
25.

Factoring $x^{2}+b x+c$

When your first term is just x^{2} you need to find two numbers that \qquad
to the last number and \qquad to the middle number.
Complete numbers 51, 54, 58, and 68 on page 596.
51.
54.
58.
68.

Difference of Squares Factor the following.

1. $x^{2}-81$
2. $a^{2}-121$

Factoring $\mathbf{a x}^{2}+b x+c$

The method you use to factor trinomials in the form $a x^{2}+b x+c$ is the \qquad method.

Can I factor a GCF out of the trinomial? Is the first term a negative number?
Complete numbers 71, 80, 88, and 89 on page 596. Also complete the two problems below.
71.
80.
88.
89.

1. $6 x^{2}+26 x+24$
2. $10 x^{2}-5 x-105$
