\qquad
\qquad

Lesson Practice B

9-5
 Solving Quadratic Equations by Graphing

Solve each quadratic equation by graphing. Set each equation equal to zero before making your table. Write your solutions as " $x=$ " or "no solution".

1. $x^{2}-6 x+9=0$
2. $x^{2}=4$

3. $2 x^{2}+4 x=6$
4. $x^{2}=5 x-10$

\qquad
\qquad

Lesson Practice C

9-5
 Solving Quadratic Equations by Graphing

Solve each quadratic equation by graphing. Set each equation equal to zero before making your table. Write your solutions as " $x=$ " or "no solution".

1. $x^{2}-9=0$

2. $-x^{2}-10 x=25$

3. $0=x^{2}+6$
4. $3+x^{2}=3 x^{2}-x$

no real solution
5. 2 seconds

Practice C

1.

$$
x=3 \text { or } x=-3
$$

2.

$$
x=-5
$$

3.

no real solution
4.

$x=\frac{3}{2}$ or $x=-1$
5. 2 seconds

Review for Mastery

1. $0,-3 ; x=0$
$3(0)^{2}+9(0) ; 0$
$3(0)+0 ; 0$
0; 0
$x=-3$
$3(-3)^{2}+9(-3) ; 0$
3(9) $+(-27) ; 0$
$27+-27 ; 0$
0; 0
2. $2 ; x=2$
$(2)^{2}-4(2)+4 ; 0$
$4-8+4 ; 0$
0; 0
3. 0,$3 ; x=0$
$-2(0)^{2}+6(0) ; 0$
$-2(0)+0 ; 0$
0; 0
$x=3$
$-2(3)^{2}+6(3) ; 0$
$-2(9)+18 ; 0$
$-18+18 ; 0$
0; 0
4. about 3.5 seconds
5. about 24.5 seconds
6. about 5.5 seconds

Challenge

1. 36 ft ; Solve $0=-0.08 x^{2}+2.88 x$ by graphing on a graphing calculator. The zeros are 0 and 36 .
2. 6 ft ; Solve $13.5=-0.08 x^{2}+2.88 x$ by graphing $y=-0.08 x^{2}+2.88 x-13.5$. The zeros are approximately 6 and 30 .
3. yes; no; Two lanes require 24 ft , which is exactly the width that is taller than 13.5 ft . Three lanes require 36 ft ; the cars in the outside lanes would hit the tunnel walls.
4. 4 ft
5. Yes; Evaluate $y=-0.08 x^{2}+2.88 x$ when $x=4$ to find $y=10.24$. Because an "average" pedestrian is shorter than 10 ft , the walkway will be tall enough.
6. accept

Problem Solving

1.

2. 8 seconds; 400 feet $\begin{array}{ll}\text { 3. } x=3 ; x=13\end{array}$
4. The firework launches at 3 s ; The firework lands at 13 s
5. B
6. D
7. H

Reading Strategies

1. quadratic function
2. $y=5 x^{2}+7 x ; f(x)=5 x^{2}+7 x$
3. Because the graph may look like it intersects a point, but actually only come close to it.
